Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,2'-[2,3,5,6-Tetramethyl-p-phenylenebis(methyleneoxy)]dibenzoic acid

Tuoping Hu

Department of Chemistry, North University of China, Taiyuan, Shanxi 030051, People's Republic of China
Correspondence e-mail: hutuopingsx@yahoo.com.cn

Received 29 January 2010; accepted 24 March 2010

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; disorder in main residue; R factor $=0.050 ; w R$ factor $=0.157$; data-to-parameter ratio $=14.6$.

The asymmetric unit of the title compound, $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{6}$, contains only a half-molecule, the other half being generated by an inversion center. The two carboxyphenoxymethyl units occupy the 1,4 -positions of the central aromatic ring. The central ring and the six linked C atoms are almost planar, with a maximum deviation of 0.0286 (17) \AA, and the plane makes a dihedral angle of $75.50(6)^{\circ}$ with the benzene ring. In the crystal, strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the carboxyl groups of adjacent molecules and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions link the molecules into zigzag chains along (220) and (110); the two types of chain are arranged alternately, forming a three-dimensional framework.

Related literature

For a structure with a similar central ring, see: Britton (2003). For structures with similar hydrogen-bonded carboxylate groups, see: Bailey \& Brown (1967); Glidewell et al. (2004).

Experimental

Crystal data
$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{6}$
$M_{r}=434.47$
Monoclinic, $P 2_{1} / \mathrm{c}$
$V=1127.8(3) \AA^{3}$
$Z=2$
$a=9.2841$ (16) \AA
Mo $K \alpha$ radiation
$b=8.6936(15)$) \AA
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$c=14.075$ (2) \AA
$\beta=96.902(3)^{\circ}$
$0.16 \times 0.12 \times 0.06 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.985, T_{\text {max }}=0.994$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050 \quad 159$ parameters
$w R\left(F^{2}\right)=0.157$
$S=1.02$
2322 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.
$C g 1$ is the centroid of the central $\mathrm{C} 9, \mathrm{C} 10, \mathrm{C} 12^{\prime}, \mathrm{C} 9^{\prime} \mathrm{C} 10^{\prime}, \mathrm{C} 12$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2} A-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	1.83	$2.624(9)$	164
O2 $^{\mathrm{i}}-\mathrm{H} 2 B \cdots \mathrm{i}$	0.82	1.91	$2.721(16)$	168
C5-H5 $\cdots C g 1^{\mathrm{ii}}$	0.93	2.80	$3.356(5)$	120

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x-1, y-\frac{1}{2},-z-\frac{1}{2}$.
Data collection: SMART (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author is grateful for funding support from the Natural Science Foundation of Shanxi Province (2007011033), the program of Technological Industrialization at the University of Shanxi Province (20070308) and the start-up fund of the North University of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2194).

References

Bailey, M. \& Brown, C. J. (1967). Acta Cryst. 22, 387-391.
Britton, D. (2003). Acta Cryst. E59, o1089-o1091.
Bruker (2007). SMART, and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Glidewell, C., Low, J. N., Skakle, J. M. S. \& Wardell, J. L. (2004). Acta Cryst. C60, o361-o363.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o995 [doi:10.1107/S1600536810011220]

2,2'-[2,3,5,6-Tetramethyl-p-phenylenebis(methyleneoxy)]dibenzoic acid

T. Hu

Comment

The title compound (I), was designed as a ligand for preparing MOF materials. This paper reports its single crystal structure in the solid state. The asymmetric unit contains only half of the molecule, with the other half generated by an inversion center at ($0,1 / 2,0$). (Fig 1.). The two branches of benzenic-carboxylate acid groups of the title compound occupy the 1,4 positions of the central aromatic ring to form a line. The central ring with its linked six C atoms, similar to the one observed in Britton (2003), is almost planar, with a maxima deviation of $-0.0286(17)^{\circ}$ for C 13 and makes a dihedral angle of $75.50(6)^{\circ}$ with the benzene ring. Strong $\mathrm{C}-\mathrm{H} \cdots \pi$ bond was observed in the structure, with a perpendicular distance of $2.700(3)^{\circ}$ to the $\mathrm{C} 9 \mathrm{C} 10-\mathrm{C} 12-\mathrm{C} 9 \mathrm{i}_{\mathrm{i}} \mathrm{C} 10_{\mathrm{i}} \mathrm{C} 12_{\mathrm{i}}$ ring plane ($\mathrm{i}:-\mathrm{x},-\mathrm{y},-\mathrm{z}$). Meanwhile, the structure of the two carboxylate groups linked by the strong H-bond (Table 1) is comparable to that described in Bailey \& Brown (1967) and Glidewell et al. (2004). Strong hydrogen bondings between the carboxylate groups of the adjacent molecules link the molecules of title compound into zig-zag chains along (220) and (-110) directions, respectively (Fig. 2), and these two chains were arranged alternatively to form a 3D framework (Fig. 3).

Experimental

1,4-bis(bromomethyl)-2,3,5,6-tetramethylbenzene ($3.2 \mathrm{~g}, 10.0 \mathrm{mmol}$), methyl salicylate ($3.08 \mathrm{~g}, 22.0 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(3.04 \mathrm{~g}, 22 \mathrm{mmol})$ were put into 40 ml of acetone and the mixture was heated to reflux for 6 hours. The resulting mixture was filtrated while it was still hot. Lots of white precipitate was formed when the filtrate was cooled down to room temperature. The precipitate was filtrated and was put into 30 ml methanol. NaOH aqueous solution ($20 \mathrm{ml}, 2 \mathrm{~mol} / \mathrm{L}$) was added and the solution was stirred for 8 hours under refluxing. After cooling to room temperature, the pH value of the clear solution was adjusted to 2 by dilute hydrochloric acid. The clear solution was allowed to evaporate slowly under inert atmosphere. Prismatic crystals of the title compound were obtained after 2 days. The crystals were filtered, washed by cold EtOH and dried in air.

Refinement

All H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.930 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic hydrogens, and with $\mathrm{C}-\mathrm{H}=0.960 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for H atoms of the methyl groups, and with $\mathrm{C}-\mathrm{H}=0.970 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for H atoms of the methylene group, and with $\mathrm{O}-\mathrm{H}=0.820 \AA$ and $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{O})$ for the hydroxide H atom, respectively. O 2 atom was treated as disordered in two positions of O 2 a and O 2 b with the occupation factors of 0.58 , and 0.42 , respectively.

supplementary materials

Figures

Fig. 1. Molecular structure showing 50% probability displacement ellipsoids. The atoms marked with A are derived from the reference atoms by means of the $(-x, 1-y,-z)$ symmetry transformation..

Fig. 2. Zig-zag chain along (220) direction in the structure. Strong hydrogen bondings are shown as dash lines.

Fig. 3. Packing diagram viewed down the c axis.

2,2'-[2,3,5,6-Tetramethyl-p-phenylenebis(methyleneoxy)]dibenzoic acid

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{6}$
$F(000)=460$
$M_{r}=434.47$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.2841$ (16) \AA
$b=8.6936(15) \AA$
$c=14.075(2) \AA$
$\beta=96.902(3)^{\circ}$
$V=1127.8(3) \AA^{3}$
$Z=2$
$D_{\mathrm{x}}=1.279 \mathrm{Mg} \mathrm{m}^{-3}$
$\theta=2.8-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colorless

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1055 reflections
$0.16 \times 0.12 \times 0.06 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
graphite
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.985, T_{\text {max }}=0.994$
6437 measured reflections

2322 independent reflections
1269 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-10 \rightarrow 12$
$k=-11 \rightarrow 11$
$l=-16 \rightarrow 18$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.157$
$S=1.02$
2322 reflections
159 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0659 P)^{2}+0.1641 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.4303(2)$	$0.0417(3)$	$0.12146(17)$	$0.0593(6)$
C2	$0.3798(2)$	$0.0589(3)$	$0.21720(15)$	$0.0552(6)$
C3	$0.4391(3)$	$-0.0387(3)$	$0.29015(17)$	$0.0711(7)$
H3	0.5065	-0.1123	0.2768	0.085^{*}
C4	$0.4006(3)$	$-0.0291(3)$	$0.38111(18)$	$0.0820(8)$
H4	0.4405	-0.0963	0.4286	0.098^{*}
C5	$0.3027(3)$	$0.0805(3)$	$0.40112(17)$	$0.0775(8)$
H5	0.2774	0.0885	0.4629	0.093^{*}
C6	$0.2413(3)$	$0.1787(3)$	$0.33116(17)$	$0.0666(7)$
H6	0.1750	0.2526	0.3459	0.080^{*}
C7	$0.2781(2)$	$0.1680(3)$	$0.23858(15)$	$0.0558(6)$
C8	$0.1090(3)$	$0.3686(3)$	$0.18341(18)$	$0.0764(8)$
H8A	0.1458	0.4480	0.2283	0.092^{*}
H8B	0.0318	0.3139	0.2097	0.092^{*}
C9	$0.0536(3)$	$0.4386(3)$	$0.08832(18)$	$0.0666(7)$
C10	$-0.0399(3)$	$0.3513(3)$	$0.0242(2)$	$0.0687(7)$
C11	$-0.0835(3)$	$0.1899(3)$	$0.0519(2)$	$0.1008(10)$
H11A	-0.1073	0.1293	-0.0048	0.151^{*}

H11B	-0.1664	0.1959	0.0865	0.151^{*}	
H11C	-0.0043	0.1428	0.0916	0.151^{*}	
C12	$0.0955(2)$	$0.5869(3)$	$0.06413(19)$	$0.0687(7)$	
C13	$0.2028(3)$	$0.6782(4)$	$0.1319(2)$	$0.1005(10)$	
H13A	0.2806	0.7135	0.0983	0.151^{*}	
H13B	0.2412	0.6137	0.1843	0.151^{*}	
H13C	0.1545	0.7649	0.1560	0.151^{*}	
O1	$0.3567(2)$	$0.0876(2)$	$0.04745(12)$	$0.0919(7)$	
O2A	$0.5605(9)$	$-0.0059(16)$	$0.1171(6)$	$0.076(3)$	$0.59(4)$
H2A	0.5699	-0.0296	0.0618	0.114^{*}	$0.59(4)$
O2B	$0.524(3)$	$-0.059(4)$	$0.1191(11)$	$0.130(6)$	$0.41(4)$
H2B	0.5576	-0.0543	0.0678	0.196^{*}	$0.41(4)$
O3	$0.22344(16)$	$0.26410(18)$	$0.16631(11)$	$0.0674(5)$	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0584(15)$	$0.0585(15)$	$0.0617(15)$	$0.0095(12)$	$0.0096(12)$	$-0.0021(11)$
C2	$0.0541(13)$	$0.0586(13)$	$0.0532(13)$	$0.0005(11)$	$0.0072(10)$	$-0.0003(10)$
C3	$0.0738(16)$	$0.0709(16)$	$0.0683(16)$	$0.0109(13)$	$0.0072(13)$	$0.0078(13)$
C4	$0.094(2)$	$0.092(2)$	$0.0604(16)$	$0.0041(17)$	$0.0079(14)$	$0.0189(14)$
C5	$0.0815(18)$	$0.096(2)$	$0.0577(15)$	$-0.0132(16)$	$0.0189(14)$	$0.0057(15)$
C6	$0.0649(15)$	$0.0753(17)$	$0.0631(15)$	$-0.0003(13)$	$0.0218(12)$	$-0.0003(13)$
C7	$0.0540(13)$	$0.0596(14)$	$0.0553(13)$	$-0.0030(11)$	$0.0122(10)$	$0.0025(11)$
C8	$0.0746(16)$	$0.0790(18)$	$0.0793(17)$	$0.0215(14)$	$0.0239(14)$	$-0.0003(14)$
C9	$0.0591(14)$	$0.0666(16)$	$0.0768(16)$	$0.0177(12)$	$0.0189(13)$	$0.0001(13)$
C10	$0.0618(15)$	$0.0567(15)$	$0.0899(18)$	$0.0113(12)$	$0.0192(14)$	$0.0024(14)$
C11	$0.100(2)$	$0.072(2)$	$0.130(3)$	$-0.0029(16)$	$0.0143(19)$	$0.0104(17)$
C12	$0.0569(14)$	$0.0634(16)$	$0.0872(18)$	$0.0098(12)$	$0.0143(13)$	$-0.0102(14)$
C13	$0.092(2)$	$0.094(2)$	$0.112(2)$	$-0.0043(18)$	$0.0007(18)$	$-0.0085(18)$
O1	$0.0932(13)$	$0.1265(17)$	$0.0561(11)$	$0.0414(12)$	$0.0097(10)$	$0.0044(10)$
O2A	$0.062(4)$	$0.116(6)$	$0.052(3)$	$0.028(3)$	$0.011(3)$	$0.003(3)$
O2B	$0.160(11)$	$0.133(12)$	$0.115(8)$	$0.077(9)$	$0.088(7)$	$0.054(6)$
O3	$0.0686(10)$	$0.0736(11)$	$0.0631(10)$	$0.0220(8)$	$0.0207(8)$	$0.0080(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 2 \mathrm{~B}$	$1.237(16)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{O} 1$	$1.241(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 1-\mathrm{O} 2 \mathrm{~A}$	$1.286(9)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.399(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.487(3)$	$\mathrm{C} 9-\mathrm{C} 12$	$1.401(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.393(3)$	$\mathrm{C} 10-\mathrm{C} 12^{\mathrm{i}}$	$1.395(3)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.397(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.524(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.372(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9600
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9600
$\mathrm{C} 4-\mathrm{C} 5$	$1.369(4)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9600
$\mathrm{C} 4-\mathrm{H} 4$	0.9300	$\mathrm{C} 12-\mathrm{C} 10^{\mathrm{i}}$	$1.395(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.375(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.518(4)$

sup-4

supplementary materials

C5-H5	0.9300
C6-C7	1.389 (3)
C6-H6	0.9300
C7-O3	1.366 (3)
C8-O3	1.440 (3)
C8-C9	1.503 (3)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 1-\mathrm{O} 1$	121.6 (9)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2 \mathrm{~A}$	119.3 (5)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 1-\mathrm{C} 2$	113.3 (7)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	121.8 (2)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1-\mathrm{C} 2$	118.4 (4)
C3-C2-C7	118.2 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	117.9 (2)
C7- $22-\mathrm{C} 1$	124.0 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	121.8 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.1
C2-C3-H3	119.1
C5-C4-C3	119.2 (2)
C5-C4-H4	120.4
C3-C4-H4	120.4
C4-C5-C6	120.9 (2)
C4-C5-H5	119.6
C6-C5-H5	119.6
C5-C6-C7	120.2 (2)
C5-C6-H6	119.9
C7-C6-H6	119.9
O3-C7-C6	123.1 (2)
O3-C7-C2	117.07 (19)
C6-C7-C2	119.8 (2)
O3-C8-C9	106.66 (18)
O3-C8-H8A	110.4
C9-C8-H8A	110.4
O3-C8-H8B	110.4
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-2(2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	158.1 (2)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-30.0 (8)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	178 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-22.7 (4)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	149.2 (8)
C7- $22-\mathrm{C} 3-\mathrm{C} 4$	-0.4 (4)
C1-C2-C3-C4	178.9 (2)
C2-C3-C4-C5	-0.8 (4)
C3-C4-C5-C6	1.0 (4)
C4-C5-C6-C7	0.0 (4)
C5-C6-C7-O3	-178.6 (2)
C5-C6-C7-C2	-1.3 (3)
C3-C2-C7-O3	178.9 (2)

C13-H13A	0.9600
C13-H13B	0.9600
C13-H13C	0.9600
O2A-H2A	0.8200
$\mathrm{O} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	0.8200
C9-C8-H8B	110.4
H8A-C8-H8B	108.6
C10-C9-C12	120.8 (2)
C10-C9-C8	118.3 (2)
C12-C9-C8	120.9 (2)
$\mathrm{C} 12-\mathrm{C} 10-\mathrm{C} 9$	120.0 (2)
$\mathrm{C} 12-\mathrm{C} 10-\mathrm{C} 11$	120.1 (2)
C9-C10-C11	119.8 (2)
C10-C11-H11A	109.5
C10-C11-H11B	109.5
H11A-C11-H11B	109.5
C10-C11-H11C	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
$\mathrm{C} 10^{\mathrm{i}}-\mathrm{C} 12-\mathrm{C} 9$	119.2 (2)
$\mathrm{C} 10^{\mathrm{i}}-\mathrm{C} 12-\mathrm{C} 13$	120.2 (3)
C9-C12-C13	120.6 (3)
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	109.5
C12-C13-H13B	109.5
H13A-C13-H13B	109.5
C12-C13-H13C	109.5
H13A-C13-H13C	109.5
H13B-C13-H13C	109.5
$\mathrm{C} 1-\mathrm{O} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{C} 1-\mathrm{O} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 8$	118.47 (17)
C3-C2-C7-C6	1.4 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	-177.8 (2)
O3-C8-C9-C10	78.2 (3)
O3-C8-C9-C12	-101.3 (2)
C12-C9-C10-C12 ${ }^{\text {i }}$	-1.6 (4)
C8-C9-C10-C12 ${ }^{\text {i }}$	179.0 (2)
C12-C9-C10-C11	179.7 (2)
C8-C9-C10-C11	0.3 (3)
C10-C9-C12-C10 ${ }^{\text {i }}$	1.5 (4)
C8-C9-C12-C10 ${ }^{\text {i }}$	-179.0 (2)
C10-C9-C12-C13	-177.0 (2)
C8-C9-C12-C13	2.5 (3)
C6-C7-O3-C8	-8.1 (3)
C2-C7-O3-C8	174.5 (2)

supplementary materials

C1-C2-C7-O3
-0.3 (3)
C9-C8-O3-C7
Symmetry codes: (i) $-x,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the centroid of the central $\mathrm{C} 9, \mathrm{C} 10, \mathrm{C} 12{ }^{\prime}, \mathrm{C}^{\prime} \mathrm{C} 10 ', \mathrm{C} 12$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Ol}^{\mathrm{ii}}$	0.82	1.83	$2.624(9)$	164.
O2B—H2B $\cdots \mathrm{Ol}^{\mathrm{ii}}$	0.82	1.91	$2.721(16)$	168.
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{Cg}^{\mathrm{iii}}$	0.93	2.80	$3.356(5)$	120.

Symmetry codes: (ii) $-x+1,-y,-z$; (iii) $-x-1, y-1 / 2,-z-1 / 2$.

supplementary materials

Fig. 1

supplementary materials

Fig. 2

Fig. 3

